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Abstract

Future Mars rover missions will require more advanced onboard autonomy for increased
scientific productivity and reduced mission operations cost.  One such form of autonomy can
be achieved by targeting precise science measurements to be made in a single command
uplink cycle.  In this paper we present an overview of our solution to the subproblems of
navigating a rover into place for microscopic imaging, mapping an instrument target point
selected by an operator using far away science camera images to close up hazard camera
images, verifying the safety of placing a contact instrument on a sample or finding nearby
safe points, and analyzing the data that comes back from the rover.  The system developed
includes portions used in the Multiple Target Single Cycle Instrument Placement
demonstration at NASA Ames in October 2004, and portions of the MI Toolkit delivered to
the Athena Microscopic Imager Instrument Team for the MER mission still operating on
Mars today.  Some of the component technologies are also under consideration for MSL
mission infusion.

 I. Introduction
ICROSCOPIC imagers are valuable tools for rover based science
and engineering tasks, from studying small scale morphology of

soils, rocks, and potential biota to the inspection of equipment.  Rover
operations and data analysis with a microscopic imager present unique
challenges that are not generally addressed in the robotics literature.
Typically, a microscopic imager must be brought very close to a feature
of interest in order to get a high magnification image.  Doing so from a
distance requires bulky optics unsuited to a rover payload. Near field
imaging requires driving a rover up to a target feature while precisely
keeping track of its position relative to the vehicle.  Bringing an arm
mounted camera lens close to an uneven surface like a rock presents a
risk, particularly in unstructured and partially unknown environments.
Images from a microscope typically have a limited depth of field, so that
many images at different focal lengths are required in order to get focused
imagery of the entire field of view.  This can require repositioning of the
camera between images, leading to rotations, translations and scale
changes.  Image processing techniques for creating a focused composite
image must account for this.

We have developed methods for our robotic vehicle, K9, to
autonomously navigate to multiple rock features scattered within a 10m
diameter area, and deploy a microscopic imager against them, all in a

Figure 1: The K9 rover is
comparable in size to the MER
rovers, with steerable cameras on a
mast and fixed cameras overlooking
the 5DOF  arm workspace.
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single command cycle.  This represents a tenfold improvement, as
measured by the number of features that can be investigated close up,
over MER class vehicles which require 3 command cycles, each
lasting a single sol, to approach and investigate a single feature. The
system uses a vision-based target tracker that recovers the 6-DOF
transformations between the rover and the tracked targets as the rover
moves. The tracker is comprised of a feature based approach that
tracks a set of interest points in 3-D using stereo, and a shape based
approach that registers dense 3-D meshes.  Autonomous analysis of
close up stereo models of rocks enables safe instrument placement on
the target feature.

In addition, we developed and delivered the MER MI Toolkit, to
support the microscopic imager (MI) instrument on the MER mission.
The MI Toolkit is a set of routines to register MI images to create
focused composite images, MI mosaics and 3D models.  These tools
are in use by the MI instrument team in MER science operations and
have also been ported to the CHAMP microscopic imager used on the
K9 rover at NASA Ames.

The paper is organized as follows.  Section II presents some related
work.  Section III discusses the onboard vision methods used for
tracking targets during navigation and mapping the selected point to rover imagery in the final rover position.
Section IV presents a method for analyzing potential placement locations for instrument safety.  Section V describes
ground based MI and CHAMP data processing tools, and finally Section VI offers some discussion of the work
presented.

 II. Related work

There is strong interest in science autonomy and instrument placement capabilities for planetary rover
applications.  Recently, Wettergreen et al. have focused on autonomy for kilometer long traverses and investigation
scenarios where search is less structured[33].  Alternatively, robotics groups at both JPL and NASA Ames have
been focusing on shorter range and higher precision science activity, developing autonomy for machine vision,
navigation, positioning, and instrument placement for precisely defined targets meters away from a rover. Tools
such as Viz[34] provide interfaces for designating science targets, and tools exist for determining rover navigation
goal positions in order to visit those science targets[1]. Ground based planning and onboard execution generate and
carry out the operations plans that best satisfy a rich set of prioritized goals and resource constraints[26].  JPL’s
visual odometry[24] is designed to significantly increase navigation precision.  The technique has been validated in
terrestrial analog field tests and demonstrated in flight on MER. Ames has developed a similar method to precisely
track the location of science targets while navigating[6] focusing instead on the precise location of multiple science
targets relative to the rover. Several other visual tracking techniques have been developed or evaluated specifically
for precision navigation to science targets with surface rovers[2][17][21][7].  Precision manipulation for planetary
rover arms has also been addressed[22], including the current state-of-the-art instrument arm positioning for the
MER rovers[3].  Much of this development is done within, or using, the CLARAty software framework[32].  The
image analysis tools described in Section V were developed for the MER Microscopic Imager (MI) instrument,
whose development was led by USGS[12][13], and later ported to the CHAMP instrument, developed by the LASP
laboratory at the University of Colorado in Boulder[19].

 III. Vision Based Tracking and Approach

Localization errors from rover odometry and deduced reckoning are too large to guide a rover to a small scale
target over large distances with the required accuracy.  Therefore, the rover must explicitly track target locations as
it navigates about the worksite and avoids obstacles.  Because features are selected for scientific relevance, they are
not necessarily those features which best facilitate visual tracking.  The rover might move completely around
targets, causing self occlusion of features of interest.  Lighting may change due to shadows cast by the rover or
changing sun angles over the course of  a Sol.

Figure 2: CHAMP (Camera Hand-lens
And Microscope Probe) microscopic
camera, a MIDP developed instrument
with 6um/pixel resolution and a
movable CCD detector array for
obtaining a “z-stack” of images at
different focal lengths.
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Many visual feature based trackers operate by matching a chosen template to an area of interest in successive
images. The search is often done using an exhaustive correlation or convolution, which can be expensive when
precise predictions are not available or large camera motions must be accommodated. In addition, some trackers
offer the user the flexibility to specify a template, but the specified template may not be amenable to tracking due to
low visual texture or changing appearance during motion. In addition, if the tracker only keeps track of one nominal
target point, it is brittle in the event of a mismatch, and vulnerable to occlusions, changing viewpoints or other real
world effects.

The appearance based tracking algorithm used in our system uses large numbers of image features matched
across stereo pairs. Feature detection and matching is done automatically using the SIFT algorithm[20], which
consists of an interest point detector to find salient points in images, a descriptor to summarizes the appearance of
detected points, and a matching algorithm to find similar descriptors. SIFT typically finds hundreds to thousands of
points in each of the rover cameras, and matches around 25% to 50% of the features with only a small number of
outliers, typically about 1% to 3%.  Our 3D SIFT based tracker uses these matched features to recover the motion of
the tracked target. SIFT provides matched pairs of image points zi

(t)
 = (li

(t), ri
(t)) and zj

(t+1)
 = (lj

(t+1), rj
(t+1)) from left

and right images at two discrete time steps.  Calibrated stereo is used to recover the 3D locations xi
(t) and xj

(t+1) of the
points.  We then estimate the 6-DOF transformation T that aligns one view to the next by minimizing

Σijεc ( xj
(t+1)  - T(t+1) xi

(t) )2

using Horn's rotation fitting algorithm[14] and RANSAC[8]. Horn's method finds the optimal transformation in
closed form, but due to the second order cost function, outliers in matching can cause arbitrarily large errors in the
recovered transformation. To identify and eliminate outliers we use RANSAC to find the transformation that is
consistent with the largest number of inliers. Inliers are defined as those matches (xi

(t), xj
(t+1)) such that

| xj
(t+1)  - T(t+1) xi

(t) | < τ

where τ is a threshold. Currently we use τ = 3 cm and repeat the RANSAC loop 100 times using 3 putative matches
in each trial, which takes negligible computation time. RANSAC returns the transformation with the largest
consensus, and the list of matches in the consensus set. To further improve the estimate we use the consensus set to
re-estimate the transform with all of the inliers. Once the rigid transformation T(t+1) is computed, the tracked feature
location is simply updated by applying the transformation to the target location.

Updates occur after each meter of rover motion.  The tracking algorithm typically tracks targets with an accuracy
of 1 mm per meter of motion, or around 0.1% distance traveled.

(a) (b) (c) (d)
Figure 3: Registration result.  (a) Hazcam view of rock with rover in place.  (b) Depth map from hazcam
stereo.  (c) Depth errors for initial guess at alignment.  (d) Final depth errors after alignment.

Even with this precision, visual tracking alone is insufficient for placing the instrument at the specified target
with high precision.  Our method corrects for errors in tracking by registering the initial view, in which the rover
operator selected the target point, to the final view, available to the rover at its terminal position once the target has
been approached.

The initial and final stereo image pairs are used to construct 3D models of the target. The rigid transformation
that aligns the two models can be used to determine the coordinate transformation between views.  This
transformation can be used to map the initial designated point to the final view for precise placement.
Our mesh registration approach projects these two models into a virtual range sensor view and minimizes the
difference between the rendered depths at each point.The 3D models v  and v’ are represented by triangulated
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meshes.  For each triangle on the mesh, the vertices vi, vj, and vk are projected onto the image plane to find the
bounding region. Then for every pixel in the bounding triangle, the location of the intersection of the camera ray c
and the facet of the mesh is a point si, given by

si = aivi+ ajvj+ akvk

with ai+ aj+ ak = 1. The depth to the intersection point is the z coordinate in the camera frame,

zi = nc
T si

which is the projection of the point si onto the normalized camera ray nc. The vector of all depths zi is denoted z, and
the range image under transformation parameterized by p is denoted z(p).  The cost function to be minimized is a
function of the difference in range images

J(p) = Σi  f( zi(p)  – zi’)

The surface model v’  does not move during registration, so z’ is a constant. The depth to the point vi changes with
transformation, so the rendering operation is done for each trial solution during optimization. The rendering takes
O(n) operations, where n is the number of pixels in the virtual range sensor.  In order to accommodate outliers in
stereo model building, we use a robust norm[27] for f().

To improve the optmization of J(p) under local minima, we first perform a coarse correlation search in order to
initialize the search close to the global optimum. Correlation over 6 dimensions is prohibitive, but we make a few
approximations to limit the search to 2 dimensions.  The transformation is estimated as part of the feature based
tracker above, and rover orientation is measured directly to within a few degrees by onboard orientation sensors.
Using the observed orientation reduces the search space to 3 dimensions.  Since we are minimizing a difference in
depth images, we perform a correlation in the 2 dimensions parallel to the image plane.  If there is an average
difference in depth, it can be computed directly and subtracted out.

Once the correlation search finds an approximate solution, we optimize over all 6 rigid transformation
parameters using Nelder-Mead[27], which is a general local nonlinear optimization method. Nelder-Mead only
requires a cost function, not any derivative information, so the cost function is used directly. In order to avoid
problems with early termination, we restart the Nelder-Mead optimization twice after it converges. Figure 5 shows
an example result of the depth error after convergence.

The transformation estimated by the 3D registration step describes how the original view and final view align.
The same transformation is applied to the selected target point to find the same point in the final view for instrument
placement.

 IV. Instrument Safety Check
Robotic manipulation of a contact sensor such as the CHAMP in unstructured environments requires

conservative checks for instrument safety prior to actual placement against the target.  At peak magnification the
CHAMP imager has a working distance of only a few millimeters, which is near the limit of positioning information
available via proprioception.  CHAMP has three contact switches, and for peak magnification the instrument arm
positions the camera near the surface and then drives the camera along its normal until the contact switches close.
Rough surfaces, large protrusions or holes, or edges of objects can damage the instrument.

These instrument safety checks need to be done when the robot is close up to the target feature.  Besides the fact
that operators may not be able to determine if a target point is safe from 10m distance, there is no certainty that the
rover will have tracked the target point with sufficient precision to avoid placing the instrument on an adjacent
unsafe zone.  Without automated safety check and arm motion planning, an additional command cycle is required
for each target.

Our instrument safety check uses several heuristics to verify that the selected imaging target is safe, or find a
safe alternative nearby.  The method consists of thresholding several statistics computed from a 3D model of the
target in which all points are given priority levels.  The highest priority is the chosen target point, and the priority of
alternate points decreases with distance from the target.  Points are then checked in priority order.  The heuristics use
a set of parameters to reflect different constraints for different instruments.

The first check is for surface roughness.  A plane is fit to the points within some radius of the point being
evaluated, where the radius corresponds to the circle circumscribing the tool interface.  The plane fit yields three
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statistics.  The first is the surface normal.  If the angle between the viewing direction and surface normal is too large,
the point is rejected as too oblique.  The second is the residual to the fit, or surface roughness.  If the average
deviation from a plane is too large, the region is rejected as too rough.  The third statistic is the maximum deviation

from the planar fit.  If the maximum deviation is too large the region is rejected.  The tool bounding radius,
maximum obliquity, maximum roughness, and maximum deviation are parameters which can be set for each tool.

The algorithm also looks at the percentage of valid stereo correspondences near the point of interest. If the tool
bounding radius contains an occlusion boundary or a textureless region, then stereo may fail often and the point is
rejected because not enough is known about the shape.  The minimum percentage of valid stereo correspondence is
also a parameter that can be set by the designer.  These heuristics are shown in Figure 5.

(a) (b) (c)
Figure 5: Instrument safety checks.  (a) surface normal. (b) surface roughness and maximum deviation. (c)
valid stereo coverage and maximum hole size.

 V. Data Analysis
Near field imagers with reduced depth of field and arm mounted monocular imagers require data analysis tools

that differ from those used for other rover imagers such as mast mounted navigation camera pairs.  The MI Toolkit
was developed to automatically perform image registration and focal section merging, the combining several images
of a surface into a single maximally in-focus image, for the Athena Microscopic Imager instrument team.

A. Image Registration
Focal section merging requires that we first find corresponding pixels in a stack of MI images.  For the best focal
section merging, we want a dense, subpixel estimate for correspondences, which can be expensive to compute when
image motion is large and there are no a priori epipolar constraints.  In order to facilitate the search for these
correspondences, we first register the images up to a homography.  If the scene is relatively planar, this homography
accounts for most of the image plane motion of scene points, and the job of the pixel by pixel correspondence search
is made much simpler.

(a) (b) (c)
Figure 4: This 3D model is the basis for 3D shape registration for precise matching of the selected point, as
well as analysis for instrument safety.  (a) Hazcam view of a rock. (b) 3D model from hazcam stereo. (c) some
points which have passed the instrument safety check, with the tool normal shown.
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 6: Image registration example. Top row shows source images from a microscopic imager moving away
from a target surface and rotating.  Bottom row (e-h) shows images aligned to the reference view.

The image registration uses a nonlinear optimization method to recover the 8 parameters describing the
homography.  The homography H describes the relationship between pixel coordinates in images I1 and I2 as

( ) ( )HxIxIxI 221 )( =′= (1)

where x and x′ are projective coordinates in 2D, and the equality is up to a scale factor.  The matrix H describing the
homography has the form

















=

1hg

fed

cba

H (2)

We choose the lower right entry to be unity because the homography is only defined up to a scale factor.  We then
search for the other 8 parameters. In addition, the two images may have slightly different exposures, which we
account for using a linear function of the pixel values, and each pixel will contain some random noise, so that
equation (1) becomes

€ 

I1 x( ) =αI2 Hx( ) + β + εx (3)

For convenience, the 8 parameters of the homography and the linear coefficients α  and β can be collected into the
parameter vector θ=(a,b,c,d,e,f,α,β).  We now define a least squares cost function over θ, 

€ 

J θ( ) = I1 x( ) −αI2 Hx( ) + β[ ]2
x
∑ (4)

and minimize J(θ) using Levenberg-Marquardt.

Working with full resolution images presents two problems.  First, the cost function in (4) may have lots of local
minima which can trap the minimization.  Second, the derivatives and cost function can take a long time to compute.
For both of these reasons, we use a coarse-to-fine approach based on image pyramids.
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(a) (b) (c)
Figure 7: Disparity optimizer result.  (a-b) two views of a surface before registration up to a homography. (c)
magnitude of disparity corrections at each pixel, showed as greyscale.  Black corresponds to 0 pixels, white to
approximately 23 pixels in this example.

The image pyramid is constructed for both I1 and I2 up to level 3, or subsampling to 2-3 the original image
dimensions.  These subsampled images are aligned only up to rotation and scale, i.e.
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The level 3 registration starts with H3 initialized to the identity matrix.  Once the level 3 registration converges,
the level 2 images are registered, again up to rotation and scale.  In order to initialize the search at level 2, we start
with the rotation angle recovered at level 3 and multiply the translation parameters by 2 to account for the difference
in scale at the next pyramid level.  The same procedure followed at level 1, and the final registration is a search for
the full homography at level 0 (full resolution), initialized by H1.

Figure 7 shows an example image sequence using an engineering model of the MER MI taken at Cornell
University, as well as the result of the registration.

B. Dense Correspondence

A stack of images registered using homography is a useful product.  Among other things it allows scientists to
browse a registered stack, scrolling from near to far focus, without the distraction of large image motions.  However,
homography does not correct for parallax due to camera motion relative to a non-planar surface.

Although parallax is typically associated with lateral camera motion, it is also present for motion along the
camera pointing direction, increasing towards the edges of the image.  Parallax motions of several pixels are
commonly observed between successive MI images, while even a fractional pixel is enough to cause artifacts when
performing the focal section merge.

We initially used a simple window correlation search to find correspondences between images.  For a given pixel
in the first image, a pixel is chosen in the second image minimizing the sum square of differences of corresponding
pixels in a window around each pixel.

Correcting each image in a stack in this way, we created a set of images we hoped would exhibit no relative
motion when viewed sequentially, only changes in focus.  Disappointingly, this wasn’t the case.  Small motions (less
than a pixel) were apparent when animating between images, and this miscorrelation caused features to grow or
shrink in the resulting focal section merge.

We first modified the window correlation search to calculate a subpixel match location by modeling the
neighborhood of the optimal match as a quadratic basin and finding its minimum. This improved the results, but
unfortunately small motions persisted in areas of the image around large depth relief.
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The continued problem turned out to be the parallax itself; different portions of the support window around a
pixel were moving by different amounts.  Depending on the texture of the scene, the area very close to the pixel
might dominate the match solution, or an area towards the edge of the window, which moved differently.
Minimizing the support window size reduced this effect at the cost of spurious incorrect solutions and noise in the
quadratic subpixel solution.

To solve our problem, we developed a new technique for maintaining support window size while removing the
problem of parallax.  We used an iterative approach to solving the correspondences.  For the first iteration, a
complete correlation search is performed between the two images, which will be called A and B.  This correlation
provides our initial estimate for parallax motion.  For each successive iteration, we use the parallax estimation from
the previous iteration to warp image A into image A’, and then perform a correlation between A’ and B.  This
correlation provides a correction to our current estimate of parallax motion.

As the iterations continue, A’ approaches B in appearance, and as it does, the error in correlation minimum due
to parallax reduces.  The resulting solution produces images without perceptible subpixel motion, allowing us to
generate focal section merges without perceptible feature size changes. Figure 7 shows the magnitude of the
parallax correction at each pixel after homography.

C. Focal Section Merging
The motivation for the development of the MI toolkit is the problem of focal section merging, which is necessary
because of the limited depth-of-field of the MI’s optics. While focus is a good cue for relative depth for humans as
they flip back and forth between images in a vertical sequence, it is also useful to be able to examine a single,
globally in-focus image of a non-planar scene.

After a stack is captured by the MI and a dense correspondence is found, images are transformed using the dense
correspondence to create a new stack of images, where each pixel x,y on one image corresponds directly to the same
pixel x,y on all other images.  Next, these transformed images are combined into a single, in-focus image, called the
focal section merge.

 A simple approach to combining the images would be to compute each pixel in the focal section merge by selecting
the pixel with sharpest focus from that location in the stack of images transformed to remove motion.
Unfortunately, the transformed images have undergone interpolation from the original images, destroying some of
the focus information.  Our approach is, for each pixel in the transformed image, to use the inverse of the dense
correspondence map, and use the corresponding location in the original image to compute sharpness..

Sharpness of focus s(x,y), is calculated from local variation in image intensity ix,y:
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After these sharpness values are computed, the focal section merge is constructed using the pixel from each
location with the highest sharpness value.  Figure 8 shows two images, followed by the focal section merge.
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(a)                                 (b)                                 (c)
Figure 8: A focal section merge uses focused sections of multiple images (a-b) to assemble a new, fully focused
view of a sample (c).

 VI. Conclusion
The overarching goal of NASA’s Mars Exploration Program is to answer the question “Did life ever exist on Mars?”
If it did, or if it still does, expectations are that it would likely be microscopic. Microscopy is therefore an essential
tool for detecting and characterizing extinct or extant life or viable habitats in any detail.  It is also fundamental to
geology. The Microscopic Imager (MI) on the Mars Exploration Rovers (MER) has provided dramatic illustration of
the critical importance of microscopy in the exploration of Mars’s surface, particularly when mobility is available,
so that a variety of geologic sites may be explored.  For example, the MER MI played an instrumental role in the
discovery and analysis of finely layered rippled bedforms and blueberry shaped concretions that helped confirm the
existence of shallow acqueous and salt rich environments in the Martian past.

Because life in extreme environments is both rare and heterogeneously distributed, finding it requires investigating
many locations, diversely distributed at both macroscopic and microscopic scales.   Thorough analysis of candidate
features is necessary to unambiguously detect life and draw meaningful conclusions.  In regions where small
fractions (i.e. 0.1%) of potential microhabitats actually harbor life, the amount of activity required to carry out a
meaningful tele-robotic search goes beyond the current demonstrated state-of-the-art even for terrestrial analog
robotic capabilities.  When the risks, latencies, and data bandwidth constraints of planetary surface operations are
added, the productivity of robotic science is minimized.

The 2009 Mars Science Laboratory (MSL) offers the next opportunity to conduct extensive close up analyses of
Martian rocks from a mobile platform after the MER missions.  The MSL mission scenario assumes MER level
instrument placement capabilities and calls for intensive, long duration (5 sols or more) analyses of Martian rocks to
search for potential microhabitats.

We have successfully demonstrated a complete integrated rover system capable of safely acquiring contact
measurements from at least 4 distinct rocks, scattered over a 10m diameter area, in a single command cycle lasting
less than a day.  Whilst work remains to validate the system and port to flight relevant computational hardware, this
represents a tenfold increase in MER class rover capability, as measured by number of features investigated, and
would increase MSL science productivity by at least 30%.

More importantly, the capability to rapidly get close up microscopic image mosaics at various resolutions of features
scattered over an area, using a microscopic imager and other short duration measurements, enables a more
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aggressive strategy of sample triage to identify promising targets much more effectively than can be done with
remotely acquired measurements alone, and greatly improving the odds that the necessary, exhaustive and time
consuming analysis of select samples will yield results.  The Ames Single Cycle Instrument Placement (SCIP)
system and MI Toolkit are essential components towards realizing this capability to effectively explore extreme
planetary environments with robotic vehicles.
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